Numerical Modeling and Experiments for Solitary Wave Shoaling and Breaking over a Sloping Beach

نویسندگان

  • Stéphan T. Grilli
  • Stéphane Abadie
چکیده

This research deals with the validation of fluid dynamic models, used for simulating shoaling and breaking solitary waves on slopes, based on experiments performed at the Ecole Supérieure d’Ingénieurs de Marseille’s (ESIM) laboratory. A separate paper, also presented at this conference, reports on experiments. In a first part of this work, a fully nonlinear potential flow model based on a Boundary Element Method (BEM) developed at the University of Rhode Island (URI), is used to generate and propagate solitary waves over a slope, up to overturning, in a set-up closely reproducing the laboratory tank geometry and wavemaker system. The BEM model uses a boundary integral equation method for the solution of governing potential flow equations and an explicit Lagrangian time stepping for time integration. In a second part, several Navier-Stokes (NS) models, developed respectively at TREFLE-ENSCPB, IMFT, IRPHE and LSEET are initialized based on the BEM solution and used for modeling breaking solitary waves in a finely discretized region encompassing the top of the slope and the surfzone. The NS models are based on the Volume of Fluid Method (VOF). This paper mostly deals with the first part, which includes calibration and comparison of BEM results with experiments, for the generation of solitary waves in the physical wave tank. Thus, parameters of the physical wave tank were numerically matched, including tank geometry and motion of the wavemaker paddle corresponding to the generation of solitary waves. Use and coupling of the BEM and VOF models for the simulation of solitary wave breaking is discussed in the paper.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

SPH Model of Solitary Waves Shoaling on a Mild Sloping Beach

Shoaling of solitary waves on a uniform plane beach connected to a constant-depth wave tank is investigated numerically using the smoothed particle hydrodynamics (SPH) method. The characteristics of water surface elevations have been analyzed for wave shoaling. To test the validity of the numerical model, the relative wave heights, the time histories of the free surface profiles are measured at...

متن کامل

شبیه‌سازی عددی شکست موج تنها بر روی ساحل شیب‌دار به‌ روش هیدرودینامیک ذرات هموار نسبتاً تراکم‌پذیر

In this article, a numerical meshless method called Weakly Compressible Smoothed Particle Hydrodynamic (WCSPH) is used to simulate the solitary wave breaking process on the beach. The present model is a two dimensional model that considers the fluid weakly compressibility. This model solves the viscous fluid equations to obtain velocity field and density and solves the equation of state to obta...

متن کامل

Theoretical and experimental study of particle trajectories for nonlinear water waves propagating on a sloping bottom.

A third-order asymptotic solution in Lagrangian description for nonlinear water waves propagating over a sloping beach is derived. The particle trajectories are obtained as a function of the nonlinear ordering parameter ε and the bottom slope α to the third order of perturbation. A new relationship between the wave velocity and the motions of particles at the free surface profile in the waves p...

متن کامل

Numerical Modeling and Experiments of Wave Shoaling over Semi-buried Cylinders in Sandy Bottom

In this paper, we study the propagation of long periodic waves over semi-buried cylindrical objects in the bottom. We present a combination of laboratory wave tank experiments, with a sandy bottom, and numerical modeling, using a two-dimensional fully nonlinear potential flow model. Experiments provide wave elevation at gages and velocity fields measured around the semi-buried objects, using an...

متن کامل

Numerical investigation of free surface flood wave and solitary wave using incompressible SPH method

Simulation of free surface flow and sudden wave profile are recognized as the most challenging problem in computational hydraulics. Several Eulerian/Lagrangian approaches and models can be implemented for simulating such phenomena in which the smoothed particle hydrodynamics method (SPH) is categorized as a proper candidate. The incompressible SPH (ISPH) method hires a precise incompressible hy...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004